Mathematical Analysis - List 2

- 1. Simplify each the following expressions in the given interval.
 - a) x + |2 x| + 3|1 x|, for $x \in (1, 2)$; b) |2x| |x + 1| + 2|x 2|, for $x \in (2, \infty)$; c) $\frac{|x - 1|}{|x + 1|} - |2 - 3x|$, for $x \in (-\infty, -1)$;
- **2.** Use the two properties of the absolute value: |x| = |-x| and |xy| = |x||y|, and the fact that |x a| represents the distance between x and a to sketch (on the real line \mathbb{R}) the solution set for each of the following inequalities.

a)
$$|3x - 1| \le 2$$
; b) $\frac{1}{2}|2 - x| < 1$; c) $|5 - 4x| > 3$; d) $|2 - 3x| \ge 4$.

3. Find the domain of each function.

a)
$$f(x) = \frac{x}{x^2 - 2x - 3}$$
; b) $f(x) = \frac{x - 2}{x^2 + 4}$; c) $f(x) = \sqrt{16 - x^2}$;
d) $f(x) = \sqrt{-(x + 3)^4}$; e) $f(x) = \frac{x - 1}{\sqrt{x - 1}}$; f) $f(x) = \frac{x - 4}{x^2 - 8x + 16}$

4. Find the range of each function.

a)
$$f(x) = x^2 + 2x$$
; b) $f(x) = -\sqrt{x} + 2$; c) $f(x) = \frac{x^2}{x^2 + 1}$; d) $f(x) = 1 + \frac{1}{x + 1}$.

5. Show that the function $g(x) = \frac{3+x^4}{x^2+2^{|x|}}$ is even and the function $f(x) = \frac{\sqrt{|x|}}{x^5+x^3}$ is odd.

6. Determine whether f is increasing or decreasing on the given interval.

a)
$$f(x) = x^3 + 3x + 2$$
, $(-\infty, 0]$; b) $f(x) = -\sqrt{x-1}$, $[1, \infty)$
c) $f(x) = \frac{1}{1+x^2}$, $[0, \infty)$; d) $f(x) = |x| - x$, \mathbb{R} .

7. A function f satisfies the following condition

$$\forall x \in \mathbb{R} \qquad f(x+1) = \frac{1+f(x)}{1-f(x)}.$$

Find f(x+2) and f(x+4), and deduce that f is periodic.

8. For each of the three "old" functions: $y = x^2$, $y = \frac{1}{x}$ and y = |x| draw the graphs of the following "new" functions:

a)
$$y = x^2 - 2$$
, $y = -\frac{1}{2}x^2$, $y = (x+3)^2$, $y = x^2 - 4x + 7$;
b) $y = -\frac{1}{x}$, $y = \frac{2}{x}$, $y = \frac{1}{x+3}$, $y = 2 + \frac{3}{x-1}$, $y = \left|2 + \frac{3}{x-1}\right|$:
c) $y = |x-2|$, $y = \frac{1}{3}|x|$, $y = 1 - |x|$, $y = |2x+4| - 2$, $y = ||2x+4| - 2|$