Mathematical Analysis - List 2

1. Simplify each the following expressions in the given interval.
a) $x+|2-x|+3|1-x|$, for $x \in(1,2)$;
b) $|2 x|-|x+1|+2|x-2|$, for $x \in(2, \infty)$;
c) $\frac{|x-1|}{|x+1|}-|2-3 x|$, for $x \in(-\infty,-1)$;
2. Use the two properties of the absolute value: $|x|=|-x|$ and $|x y|=|x||y|$, and the fact that $|x-a|$ represents the distance between x and a to sketch (on the real line \mathbb{R}) the solution set for each of the following inequalities.
a) $|3 x-1| \leqslant 2$;
b) $\frac{1}{2}|2-x|<1$;
c) $|5-4 x|>3$;
d) $|2-3 x| \geqslant 4$.
3. Find the domain of each function.
a) $f(x)=\frac{x}{x^{2}-2 x-3}$;
b) $f(x)=\frac{x-2}{x^{2}+4}$;
c) $f(x)=\sqrt{16-x^{2}}$;
d) $f(x)=\sqrt{-(x+3)^{4}}$;
e) $f(x)=\frac{x-1}{\sqrt{x-1}} ;$
f) $f(x)=\frac{x-4}{x^{2}-8 x+16}$.
4. Find the range of each function.
a) $f(x)=x^{2}+2 x$;
b) $f(x)=-\sqrt{x}+2$;
c) $f(x)=\frac{x^{2}}{x^{2}+1}$;
d) $f(x)=1+\frac{1}{x+1}$.
5. Show that the function $g(x)=\frac{3+x^{4}}{x^{2}+2^{|x|}}$ is even and the function $f(x)=\frac{\sqrt{|x|}}{x^{5}+x^{3}}$ is odd.
6. Determine whether f is increasing or decreasing on the given interval.
a) $f(x)=x^{3}+3 x+2, \quad(-\infty, 0]$;
b) $f(x)=-\sqrt{x-1}, \quad[1, \infty)$;
c) $f(x)=\frac{1}{1+x^{2}}, \quad[0, \infty)$;
d) $f(x)=|x|-x, \mathbb{R}$.
7. A function f satisfies the following condition

$$
\forall x \in \mathbb{R} \quad f(x+1)=\frac{1+f(x)}{1-f(x)}
$$

Find $f(x+2)$ and $f(x+4)$, and deduce that f is periodic.
8. For each of the three "old" functions: $y=x^{2}, y=\frac{1}{x}$ and $y=|x|$ draw the graphs of the following "new" functions:
a) $y=x^{2}-2, \quad y=-\frac{1}{2} x^{2}, \quad y=(x+3)^{2}, \quad y=x^{2}-4 x+7$;
b) $y=-\frac{1}{x}, \quad y=\frac{2}{x}, \quad y=\frac{1}{x+3}, \quad y=2+\frac{3}{x-1}, \quad y=\left|2+\frac{3}{x-1}\right|$:
c) $y=|x-2|, \quad y=\frac{1}{3}|x|, \quad y=1-|x|, \quad y=|2 x+4|-2, \quad y=||2 x+4|-2|$.

